3.4.6 \(\int (a+a \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [306]

3.4.6.1 Optimal result
3.4.6.2 Mathematica [A] (verified)
3.4.6.3 Rubi [A] (verified)
3.4.6.4 Maple [A] (verified)
3.4.6.5 Fricas [A] (verification not implemented)
3.4.6.6 Sympy [F]
3.4.6.7 Maxima [B] (verification not implemented)
3.4.6.8 Giac [B] (verification not implemented)
3.4.6.9 Mupad [B] (verification not implemented)

3.4.6.1 Optimal result

Integrand size = 39, antiderivative size = 62 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=a C x+\frac {a (A+2 (B+C)) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a (A+B) \tan (c+d x)}{d}+\frac {a A \sec (c+d x) \tan (c+d x)}{2 d} \]

output
a*C*x+1/2*a*(A+2*B+2*C)*arctanh(sin(d*x+c))/d+a*(A+B)*tan(d*x+c)/d+1/2*a*A 
*sec(d*x+c)*tan(d*x+c)/d
 
3.4.6.2 Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.48 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=a C x+\frac {a A \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a B \text {arctanh}(\sin (c+d x))}{d}+\frac {a C \text {arctanh}(\sin (c+d x))}{d}+\frac {a A \tan (c+d x)}{d}+\frac {a B \tan (c+d x)}{d}+\frac {a A \sec (c+d x) \tan (c+d x)}{2 d} \]

input
Integrate[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec 
[c + d*x]^3,x]
 
output
a*C*x + (a*A*ArcTanh[Sin[c + d*x]])/(2*d) + (a*B*ArcTanh[Sin[c + d*x]])/d 
+ (a*C*ArcTanh[Sin[c + d*x]])/d + (a*A*Tan[c + d*x])/d + (a*B*Tan[c + d*x] 
)/d + (a*A*Sec[c + d*x]*Tan[c + d*x])/(2*d)
 
3.4.6.3 Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.06, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {3042, 3510, 25, 3042, 3500, 3042, 3214, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a \cos (c+d x)+a) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3510

\(\displaystyle \frac {a A \tan (c+d x) \sec (c+d x)}{2 d}-\frac {1}{2} \int -\left (\left (2 a C \cos ^2(c+d x)+a (A+2 (B+C)) \cos (c+d x)+2 a (A+B)\right ) \sec ^2(c+d x)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \int \left (2 a C \cos ^2(c+d x)+a (A+2 (B+C)) \cos (c+d x)+2 a (A+B)\right ) \sec ^2(c+d x)dx+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {2 a C \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (A+2 (B+C)) \sin \left (c+d x+\frac {\pi }{2}\right )+2 a (A+B)}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{2} \left (\int (a (A+2 (B+C))+2 a C \cos (c+d x)) \sec (c+d x)dx+\frac {2 a (A+B) \tan (c+d x)}{d}\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\int \frac {a (A+2 (B+C))+2 a C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a (A+B) \tan (c+d x)}{d}\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {1}{2} \left (a (A+2 (B+C)) \int \sec (c+d x)dx+\frac {2 a (A+B) \tan (c+d x)}{d}+2 a C x\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (a (A+2 (B+C)) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {2 a (A+B) \tan (c+d x)}{d}+2 a C x\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{2} \left (\frac {a (A+2 (B+C)) \text {arctanh}(\sin (c+d x))}{d}+\frac {2 a (A+B) \tan (c+d x)}{d}+2 a C x\right )+\frac {a A \tan (c+d x) \sec (c+d x)}{2 d}\)

input
Int[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d 
*x]^3,x]
 
output
(a*A*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (2*a*C*x + (a*(A + 2*(B + C))*ArcT 
anh[Sin[c + d*x]])/d + (2*a*(A + B)*Tan[c + d*x])/d)/2
 

3.4.6.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3510
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)*Cos[ 
e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - S 
imp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*( 
m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b^2*d*(m 
 + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)) 
))*Sin[e + f*x] - b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; F 
reeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 
 0] && LtQ[m, -1]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.4.6.4 Maple [A] (verified)

Time = 5.64 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.48

method result size
parts \(\frac {a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {\left (a A +B a \right ) \tan \left (d x +c \right )}{d}+\frac {\left (B a +a C \right ) \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {a C \left (d x +c \right )}{d}\) \(92\)
derivativedivides \(\frac {a A \tan \left (d x +c \right )+B a \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+a C \left (d x +c \right )+a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B a \tan \left (d x +c \right )+a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(100\)
default \(\frac {a A \tan \left (d x +c \right )+B a \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+a C \left (d x +c \right )+a A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B a \tan \left (d x +c \right )+a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(100\)
parallelrisch \(\frac {\left (-\frac {\left (1+\cos \left (2 d x +2 c \right )\right ) \left (A +2 B +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2}+\frac {\left (1+\cos \left (2 d x +2 c \right )\right ) \left (A +2 B +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2}+d x C \cos \left (2 d x +2 c \right )+\left (A +B \right ) \sin \left (2 d x +2 c \right )+d x C +A \sin \left (d x +c \right )\right ) a}{d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(124\)
risch \(a C x -\frac {i a \left (A \,{\mathrm e}^{3 i \left (d x +c \right )}-2 A \,{\mathrm e}^{2 i \left (d x +c \right )}-2 B \,{\mathrm e}^{2 i \left (d x +c \right )}-A \,{\mathrm e}^{i \left (d x +c \right )}-2 A -2 B \right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {B a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{d}-\frac {a A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {B a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{d}\) \(198\)
norman \(\frac {a C x +a C x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a C x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a C x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {a \left (3 A +2 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {4 B a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {6 a A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-2 a C x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 a C x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {a \left (A +2 B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {4 a \left (2 A +B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {a \left (A +2 B +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a \left (A +2 B +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(268\)

input
int((a+cos(d*x+c)*a)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x,method 
=_RETURNVERBOSE)
 
output
a*A/d*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+(A*a+B*a)/ 
d*tan(d*x+c)+(B*a+C*a)/d*ln(sec(d*x+c)+tan(d*x+c))+a*C/d*(d*x+c)
 
3.4.6.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.76 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {4 \, C a d x \cos \left (d x + c\right )^{2} + {\left (A + 2 \, B + 2 \, C\right )} a \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (A + 2 \, B + 2 \, C\right )} a \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (A + B\right )} a \cos \left (d x + c\right ) + A a\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, 
 algorithm="fricas")
 
output
1/4*(4*C*a*d*x*cos(d*x + c)^2 + (A + 2*B + 2*C)*a*cos(d*x + c)^2*log(sin(d 
*x + c) + 1) - (A + 2*B + 2*C)*a*cos(d*x + c)^2*log(-sin(d*x + c) + 1) + 2 
*(2*(A + B)*a*cos(d*x + c) + A*a)*sin(d*x + c))/(d*cos(d*x + c)^2)
 
3.4.6.6 Sympy [F]

\[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=a \left (\int A \sec ^{3}{\left (c + d x \right )}\, dx + \int A \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \cos ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int C \cos ^{2}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int C \cos ^{3}{\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx\right ) \]

input
integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**3, 
x)
 
output
a*(Integral(A*sec(c + d*x)**3, x) + Integral(A*cos(c + d*x)*sec(c + d*x)** 
3, x) + Integral(B*cos(c + d*x)*sec(c + d*x)**3, x) + Integral(B*cos(c + d 
*x)**2*sec(c + d*x)**3, x) + Integral(C*cos(c + d*x)**2*sec(c + d*x)**3, x 
) + Integral(C*cos(c + d*x)**3*sec(c + d*x)**3, x))
 
3.4.6.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 130 vs. \(2 (59) = 118\).

Time = 0.21 (sec) , antiderivative size = 130, normalized size of antiderivative = 2.10 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {4 \, {\left (d x + c\right )} C a - A a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, B a {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 2 \, C a {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 4 \, A a \tan \left (d x + c\right ) + 4 \, B a \tan \left (d x + c\right )}{4 \, d} \]

input
integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, 
 algorithm="maxima")
 
output
1/4*(4*(d*x + c)*C*a - A*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin( 
d*x + c) + 1) + log(sin(d*x + c) - 1)) + 2*B*a*(log(sin(d*x + c) + 1) - lo 
g(sin(d*x + c) - 1)) + 2*C*a*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1 
)) + 4*A*a*tan(d*x + c) + 4*B*a*tan(d*x + c))/d
 
3.4.6.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 141 vs. \(2 (59) = 118\).

Time = 0.38 (sec) , antiderivative size = 141, normalized size of antiderivative = 2.27 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {2 \, {\left (d x + c\right )} C a + {\left (A a + 2 \, B a + 2 \, C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (A a + 2 \, B a + 2 \, C a\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \]

input
integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, 
 algorithm="giac")
 
output
1/2*(2*(d*x + c)*C*a + (A*a + 2*B*a + 2*C*a)*log(abs(tan(1/2*d*x + 1/2*c) 
+ 1)) - (A*a + 2*B*a + 2*C*a)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(A*a* 
tan(1/2*d*x + 1/2*c)^3 + 2*B*a*tan(1/2*d*x + 1/2*c)^3 - 3*A*a*tan(1/2*d*x 
+ 1/2*c) - 2*B*a*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d
 
3.4.6.9 Mupad [B] (verification not implemented)

Time = 1.97 (sec) , antiderivative size = 176, normalized size of antiderivative = 2.84 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {\frac {A\,a\,\sin \left (c+d\,x\right )}{2}+\frac {A\,a\,\sin \left (2\,c+2\,d\,x\right )}{2}+\frac {B\,a\,\sin \left (2\,c+2\,d\,x\right )}{2}}{d\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {1}{2}\right )}-\frac {2\,\left (\frac {A\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,1{}\mathrm {i}}{2}+B\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,1{}\mathrm {i}-C\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+C\,a\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,1{}\mathrm {i}\right )}{d} \]

input
int(((a + a*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + 
 d*x)^3,x)
 
output
((A*a*sin(c + d*x))/2 + (A*a*sin(2*c + 2*d*x))/2 + (B*a*sin(2*c + 2*d*x))/ 
2)/(d*(cos(2*c + 2*d*x)/2 + 1/2)) - (2*((A*a*atan((sin(c/2 + (d*x)/2)*1i)/ 
cos(c/2 + (d*x)/2))*1i)/2 + B*a*atan((sin(c/2 + (d*x)/2)*1i)/cos(c/2 + (d* 
x)/2))*1i - C*a*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)) + C*a*atan((si 
n(c/2 + (d*x)/2)*1i)/cos(c/2 + (d*x)/2))*1i))/d